Скорость молекул газа опыт штерна. Штерна опыт. Идеальный газ в однородном поле тяготения

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

Предположение, что молекулы тела могут иметь любую скорость, сначала теоретически доказал в 1856 году английский физик Дж. Максвелл . Он считал, что ско-рость молекул в данный момент времени является случайной, и поэтому их распре-деление по скоростям носит статистический характер (распределение Максвелла ).

Установленный им характер распределе-ния молекул по скоростям графически пред-ставлен кривой, изображенной на рис. 1.17. Наличие у нее максимума (бугра) свиде-тельствует о том, что скорости большинства молекул приходятся на определенный ин-тервал. Она несимметричная, поскольку мо-лекул с большими скоростями меньше, чем с небольшими.

Быстрые молекулы определяют течение многих физических процессов при обычных условиях. Например, благодаря им происхо-дит испарение жидкостей, ведь при ком-натной температуре большинству молекул недостаточно энергии, чтобы разорвать связь с другими молекулами (она намного выше (3 / 2) . kT), а у молекул с высокими скоростями она достаточная.

Рис. 1.18. Опыт О. Штерна

Распределение молекул по скоростям Мак-свелла на протяжении продолжительного вре-мени оставалось экспериментально непод-твержденным, и лишь в 1920 году немецкий ученый О. Штерн сумел экспериментально измерить скорости теплового движения мо-лекул .

На горизонтальном столе, который мог поворачиваться вокруг вертикальной оси (рис. 1.18), находились два коаксиальных цилиндра A и B. из которых откачивали воздух до давления порядка 10 -8 Па. Вдоль оси цилиндров находилась платиновая про-волока C, покрытая тонким слоем серебра. При прохождении по проволоке электри-ческого тока она нагревалась, и с ее по-верхности интенсивно испарялось серебро, которое преимущественно оседало на внут-ренней поверхности цилиндра A. Часть мо-лекул серебра проходила сквозь узкую щель в цилиндре A наружу, попадая на поверх-ность цилиндра B. Если цилиндры не вра-щались, молекулы серебра, двигаясь прямо-линейно, оседали напротив щели в окруж-ности точки D. Когда же систему приво-дили в движение с угловой скоростью около 2500—2700 об/с, изображение щели смеща-лось в точку E, а ее края «размывались», образовывая бугор с пологими склонами.

В науке опыт Штерна оконча-тельно подтвердил справедли-вость молекулярно-кинетической теории.

Приняв во внимание, что смещение l = v . t = ω R A t , а время полета молекул t = (R B — R A) / v , получим:

l = ω(R B — R A) R A / v .

Как видно из формулы, смешение мо-лекулы от точки D зависит от скорости ее движения. Вычисления скорости молекул серебра по данным опыта Штерна при тем-пературе спирали около 1200 °C давали зна-чения в пределах от 560 до 640 м/c, что хорошо сочеталось с теоретически опре-деленной средней скоростью молекул 584 м/с.

Средняя скорость теплового движения мо-лекул газа может быть найдена с помощью уравнения p = nm 0 v̅ 2 х :

E̅ = (3 / 2) . kT = m 0 v̅ 2 / 2.

Отсюда средний квадрат скорости посту-пательного движения молекулы равен:

v̅ 2 = 3 kT / m 0 , или v̅ = √(v̅ 2) = √(3 kT / m 0). Материал с сайта

Корень квадратный из средне-го квадрата скорости молеку-лы называется средней квад-ратичной скоростью .

Учитывая, что k = R / N A и m 0 = M / N A , из формулы v̅ = √(3 kT / m 0) получим:

v̅ = (3RT / M).

По этой формуле можно вычислить сред-нюю квадратичную скорость молекул для лю-бого газа. Например, при 20°C (T = 293K) для кислорода она равна 478 м/с, для воздуха — 502 м/с, для водорода — 1911 м/с. Даже при таких значительных скоростях (при-близительно равняется скорости распростра-нения звука в данном газе) передвижение молекул газа не такое уж стремительное, поскольку между ними происходят много-численные столкновения. Поэтому траекто-рия движения молекулы напоминает траек-торию движения броуновской частицы.

Средняя квадратичная скорость молекулы не существенно от-личается от средней скорости ее теплового движения — она приблизительно в 1,2 раза боль-ше.

На этой странице материал по темам:

  • Молекулярная физика доклад

  • 10 класс физика скорость движения молекул опыт штерна

  • Опыт штерна суть кратко

  • Реферат про опыт штерна

  • Доклад по физике опыт штерна

Вопросы по этому материалу:

В середине XIX века была сформулирована молекулярно-кинетическая теория, но тогда не было никаких доказательств существования самих молекул. Вся теория базировалась на предположении о движении молекул, но как измерить скорость их движения, если они невидимы?

Теоретики первыми нашли выход. Из уравнения молекулярно-кинетической теории газов известно, что

Получена формула для расчета среднеквадратичной скорости, но масса молекулы неизвестна. Запишем по-другому значение υ кв:

(2.1.2)

А мы знаем, что , тогда

(2.1.3)

Где Р – давление; ρ - плотность. Это уже измеряемые величины.

Например, при плотности азота, равной 1,25 кг/м, 3 , при t = 0 °С и P = 1 атм, скорости молекул азота . Для водорода: .

При этом интересно отметить, что скорость звука в газе близка к скорости молекул в этом газе , где γ – коэффициент Пуассона. Это объясняется тем, что звуковые волны переносятся молекулами газа.

Проверка того факта, что атомы и молекулы идеальных газов в термически равновесном пучке имеют различные скорости, была осуществлена немецким физиком Отто Штерном (1888-1969) в 1920 г. Схема его установки приведена на рис. 2.1.


Рис. 2.1

Платиновая нить А , покрытая снаружи серебром, располагается вдоль оси коаксиальных цилиндров S 1 , S 3 ,. Внутри цилиндров поддерживается низкое давление порядка Па. При пропускании тока через платиновую нить она разогревается до температуры выше точки плавления серебра (961,9 °С). Серебро испаряется, и его атомы через узкие щели в цилиндре S 1 , и диафрагме S 2 , летят к охлаждаемой поверхности цилиндра S 1 , на которой они осаждаются. Если цилиндры S 1 , S 3 и диафрагма не вращаются, то пучок осаждается в виде узкой полоски D на поверхности цилиндра S 3 . Если же вся система приводится во вращение с угловой скоростью то изображение щели смещается в точку и становится расплывчатым.

Пусть l – расстояние между D и , измеренное вдоль поверхности цилиндра S 3 , оно равно где – линейная скорость точек поверхности цилиндра S 3 , радиусом R ; - время прохождения атомами серебра расстояния . Таким образом, имеем откуда – можно определить величину скорости теплового движения атомов серебра. Температура нити в опытах Штерна равнялась 1200 °С, что соответствует среднеквадратичной скорости . В эксперименте для этой величины получилось значение от 560 до 640 м/с. Кроме того, изображение щели всегда оказывалось размытым, что указывало на то, что атомы Ag движутся с различными скоростями.

Таким образом, в этом опыте были не только измерены скорости газовых молекул, но и показано, что они имеют большой разброс по скоростям. Причина – в хаотичности теплового движения молекул. Ещё в XIX веке Дж. Максвелл утверждал, что молекулы, беспорядочно сталкиваясь друг с другом, как-то «распределяются» по скоростям, причём вполне определённым образом.

Из формул

получаем формулу для расчета средней квадратичной скорости движения молекул одноатомного газа:

где R - универсальная газовая постоянная.

Таким образом зависит от температуры и природы газа. Так, при 0°С для водорода она равна 1800 м/с. для азота - 500 м/с.

Впервые на опыте определил скорость молекул О. Штерн. В камере, из которой откачан воздух, находятся два коаксиальных цилиндра 1 и 2 (рис. 1), которые могут вращаться вокруг оси с постоянной угловой скоростью .

Вдоль оси натянута платиновая посеребренная проволока, через которую пропускают электрический ток. Она нагревается, и серебро испаряется. Атомы серебра через щель 4 в стенке цилиндра 2 попадают в цилиндр 1 и оседают на его внутренней поверхности, оставляя след в виде узкой полоски, параллельной щели. Если цилиндры неподвижны, то полоска расположена напротив щели (точка В на рис. 2, а) и имеет одинаковую толщину.

При равномерном вращении цилиндра с угловой скоростью полоска смещается в сторону, противоположную вращению, на расстояние s относительно точки В (рис. 2, б). На такое расстояние сместилась точка В цилиндра 1 за время t, которое необходимо, чтобы атомы серебра прошли расстояние, равное R - r, где R и r - радиусы цилиндров 1 и 2.

где - линейная скорость точек поверхности цилиндра 1. Отсюда

Скорость атомов серебра

Зная R, r, и измерив экспериментально s, по этой формуле можно рассчитать среднюю скорость движения атомов серебра. В опыте Штерна . Это значение совпадает с теоретическим значением средней квадратичной скорости молекул. Это служит экспериментальным доказательством справедливости формулы (1), а следовательно, и формулы (3).

В опыте Штерна было обнаружено, что ширина полоски на поверхности вращающегося цилиндра гораздо больше геометрического изображения щели и толщина ее в разных местах неодинакова (рис. 3, а). Это можно объяснить только тем, что атомы серебра движутся с различными скоростями. Атомы, летящие с некоторой скоростью, попадают в точку В’. Атомы, летящие быстрее, попадают в точку, лежащую на рисунке 2 выше точки В’, а летящие медленнее, - ниже точки В’. Таким образом, каждой точке изображения соответствует определенная скорость, которую достаточно просто определить из опыта. Этим и объясняется то, что толщина слоя атомов серебра, осевших на поверхности цилиндра, не везде одинакова. Наибольшая толщина в средней части слоя, а по краям толщина уменьшается.

Изучение формы сечения полоски осевшего серебра с помощью микроскопа показало, что она имеет вид, примерно соответствующий изображенному на рисунке 3, б. По толщине отложившегося слоя можно судить о распределении атомов серебра по скоростям.

Разобьем весь интервал измеренных на опыте скоростей атомов серебра на малые . Пусть - одна из скоростей этого интервала. По плотности слоя подсчитаем число атомов, имеющих скорость в интервале от , и построим график функции

где N - общее число атомов серебра, осевших на поверхности цилиндра. Получим кривую, изображенную на рисунке 4. Она называется функцией распределения молекул по скоростям.

Площадь заштрихованной площадки равна

т.е. равна относительному числу атомов, имеющих скорость в пределах

Мы видим, что числа частиц, имеющих скорость из разных интервалов , резко различны. Существует какая-то скорость, около значения которой находятся скорости, с которыми движется наибольшее число молекул. Она называется наиболее вероятной скоростью , и ей соответствует максимум на рисунке 4. Эта кривая хорошо соответствует кривой, полученной Дж. Максвеллом, который, пользуясь статистическим методом, теоретически доказал, что в газах, находящихся в состоянии термодинамического равновесия, устанавливается некоторое, не меняющееся со временем, распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону, графически изображаемому кривой . Наиболее вероятная скорость, как показал Максвелл, зависит от температуры газа и массы его молекул по формуле

БРОУН Роберт (), английский ботаник Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц. Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц.


Броуновское движение - это тепловое движение взвешенных в жидкости или газе частиц год – наблюдал явление, рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение никогда не прекращается, частицы движутся беспорядочно. Это тепловое движение.






ПЕРРЕН Жан Батист (), французский физик. Экспериментальные исследования Перреном броуновского движения () окончательно доказали реальность существования молекул. Нобелевская премия (1926).


Опыты Перрена Наблюдал броуновские частицы в очень тонких слоях жидкости Сделал вывод, что концентрация частиц в поле силы тяжести должна убывать с высотой по такому же закону, что и концентрация молекул газа. Преимущество - масса броуновских частиц за счёт большой массы происходит быстрее. На основе подсчёта этих частиц на разных высотах определив постоянную Авогадро новым способом.


МАКСВЕЛЛ Джеймс Клерк ((), английский физик, создатель классической электродинамики, один из основоположников статистической физики Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон закон распределения молекул по скоростям (Максвелла распределение).


БОЛЬЦМАН Людвиг (), австрийский физик, один из основателей статистической физики и физической кинетики. Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Больцман обобщил закон распределения скоростей молекул в газах, находящихся во внешнем силовом поле, и установил формулу распределения молекул газа по координатам при наличии произвольного потенциального поля ().


ШТЕРН Отто (), физик. Родился в Германии, с 1933 жил в США. Отто Штерн измерил (1920) скорость теплового движения молекул газа (опыт Штерна). Экспериментальное определение скоростей теплового движения молекул газа, осуществленное О. Штерно м подтвердил правильность основ кинетической теории газов. Нобелевская премия, 1943 год.






Опыт Штерна Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полёта внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.


Опыт Штерна Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов. Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2, легко найти величину смещения L и получить выражение, из которого можно выразить скорость движения атома


Подумайте … Многократные повторения опыта Штерна позволили установить, что с увеличением температуры участок полосы с максимальной толщиной смещается к началу. Что это значит? Ответ: при увеличении температуры скорости молекул возрастают, и тогда наиболее вероятная скорость находится в области высоких температур.